翻訳と辞書 |
Extension and contraction of ideals : ウィキペディア英語版 | Extension and contraction of ideals In commutative algebra, the extension and contraction of ideals are operations performed on sets of ideals. == Extension of an ideal ==
Let ''A'' and ''B'' be two commutative rings with unity, and let ''f'' : ''A'' → ''B'' be a (unital) ring homomorphism. If is an ideal in ''A'', then need not be an ideal in ''B'' (e.g. take ''f'' to be the inclusion of the ring of integers Z into the field of rationals Q). The extension of in ''B'' is defined to be the ideal in ''B'' generated by . Explicitly, :
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Extension and contraction of ideals」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|